Informatics AN

ARMARI FAMILY FOUR

Artikel
Implementasi Sequitur Dalam Kompresi Pola Teks Berulang

Elsya Sabrina Asmita Simorangkir

Teknologi Informasi, Universitas Senior Medan; Medan - 2013 1; Indonesia; elsyasabrinaas@gmail.com

Abstrak: kemajuan teknologi telah berperan penting dalam mengubah cara manusia bertukar
data dan informasi. Dari penggunaan media cetak, kini beralih ke media online, yang menuntut
pengguna untuk memiliki akses cepat terhadap informasi. Namun, pergeseran ini juga
menimbulkan tantangan baru terkait keterbatasan ruang penyimpanan. Pertumbuhan data teks
yang sangat cepat menuntut adanya metode penyimpanan yang efisien. Salah satu pendekatan
yang dapat diterapkan untuk mengatasi masalah ini adalah dengan menggunakan teknik
kompresi data. Dengan kompresi data, informasi dapat disimpan lebih efisien, memungkinkan
pengguna untuk menghemat ruang penyimpanan. Algoritma Sequitur membangun tata bahasa
dengan mengganti frase berulang dalam urutan yang diberikan dengan aturan baru pada data
sekuensial, khusunya data teks. Penyimpanan data dan kompresi saling berkaitan karena
kompresi membantu memaksimalkan kapasitas penyimpanan serta meningkatkan efisiensi.
Penelitian ini bertujuan untuk menghasilkan strategi dan mengkaji kinerja Algoritma Sequitur
dalam kompresi pola teks berulang.

Kata Kunci: Kompresi, Algoritma Sequitur, Pola Teks Berulang, Teknologi, Sharing
Document

1. Pendahuluan

Suatu proses mengurangi ukuran data dengan cara menghilangkan redundansi (pengulangan)
atau merepresentasikan data dalam bentuk yang lebih efisien disebut sebagai proses
kompresi[1], [2]. kompresi data dilakukan untuk mengubah aliran data masukan menjadi aliran
data lain dengan tujuan untuk membuat ukuran menjadi lebih kecil dari ukuran aslinya serta
untuk mengurangi pemakaian ruang memori dan mempercepat proses transmisi data[3], [4].

File teks merupakan susunan dari baris data yang berupa karakter huruf, angka, simbol yang
merupakan representasi kode ASCII. file teks memiliki beberapa ekstensi, seperti untuk notepad
memiliki ekstensi file *.txt, pada Microsoft Word tergantung dari versi MS. Office maka
terdapat ekstensi *.doc, *.docx, dan *.rtf. karakter yang tersimpan pada file teks berformat angka
1 dan 0 yang merupakan hasil pembacaan dari kode ASCII. Ukuran file teks dipengaruhi dengan
banyaknya karakter yang tersimpan pada file tersebut, semakin besar ukuran sebuah file maka
semakin banyak menggunakan ruang memori dan proses transmisi pun menjadi lebih lambat.

Penerapan algoritma kompresi data seringkali digunakan untuk proses transmisi data (data
transmission) dan penyimpanan data (storage). Algoritma kompresi data menawarkan solusi

Riwayat Artikel: dengan mengurangi ukuran data tanpa mengorbankan informasi esensial sehingga pertukaran
Diajukan :29-12-2026 data yang lebih efesien[5],[6]. Keuntungan data yang terkompresi antara lain dapat mengurangi
Direvisi :05-01-2026 bottleneck pada transmisi data, mempersulit pembacaan data oleh pihak yang tidak
Diterima : 10-01-2026 berkepentingan, dan memudahkan distribusi data[7],[8]. Untuk mengurangi ukuran dari pola
Diterbitkan : 23-01-2026 teks berulang, ada beberapa algoritma yang digunakan untuk proses kompresi data, seperti

algoritma sequitur. algoritma sequitur bekerja untuk mendeteksi pola atau substruktur yang
muncul berulang dalam suatu data[9],[10].

Hak Cipta: © 2026 oleh penulis. Penelitian ini bertujuan untuk menghasilkan strategi dan mengkaji kinerja Algoritma Sequitur
dalam kompresi pola teks berulang. Menyelidiki dan membandingkan performa dari kedua
algoritma kompresi data dalam hal efisiensi penyimpanan dan kecepatan transfer data. Melalui
analisis ini, diharapkan dapat ditemukan algoritma kompresi yang optimal untuk situasi tertentu,
memberikan landasan yang kuat untuk pengembangan sistem penyimpanan dan transfer data
yang lebih efisien.

Artikel ini adalah artikel akses terbuka yang
didistribusikan di bawah syarat dan
ketentuan Creative Commons Attribution-
ShareAlike 4.0

[creativecommons.org/licenses/by-sa/4.0/]

E-ISSN : 3090-0786 | Volume 01 Issue 02 | January 2026 | https://doi.org/10.63215/Informatics.v2il1.40

Informatics 2026 10

2. Metodologi

Berikut metologi penelitian yang dilakukan pada penelitian ini Adalah sebagai berikut:

=

Data Teks

(Dokumen, Kalimat)

- Induksi Grammar
- Deteksi Pola
- Reduksi Redundan

¥

- Compression Ratio
- Rule Count
- Akurasi Pola

Gambar 1. Metodologi Penelitian
Dalam analisis performa algoritma kompresi data dalam penyimpanan dan transfer data
melibatkan pemahaman konsep dasar terkait kompresi data, jenis-jenis algoritma kompresi, dan
faktor-faktor yang memengaruhi performa.

2.1 Kompresi Data

Kompresi data adalah proses mengurangi ukuran data dengan cara menghilangkan redundansi

atau informasi yang tidak perlu. Dalam teknik kompresi data, redundansi dari data menjadi

masalah utama. Redundansi yaitu kejadian berulangnya data atau kumpulan data yang sama
dalam sebuah database. Kompresi data ditujukan untuk mereduksi penyimpanan data yang
redundan. Terdapat dua jenis kompresi data:

1. Kompresi tanpa kehilangan (lossless): Teknik ini mampu memadatkan data dan
mengembalikannya sama persis seperti semula. Tidak ada informasi yang hilang atau harus
dikurangi dalam proses untuk mengurangi ukuran besar data

2. Kompresi berkehilangan (lossy): Dengan teknik ini, kehilangan data yang kecil masih dapat
diterima. Dengan menghilangkan data yang tidak penting, dapat menghemat ruang
penyimpanan.

2.2 Algoritma Sequitur

Sequitur (atau algoritma Nevill-Manning) adalah algoritma rekursif yang dikembangkan oleh
Craig Nevill-Manning dan Ian H. Witten pada tahun 1997 yang menyimpulkan struktur hierarkis
(tata bahasa bebas konteks) dari urutan simbol diskrit. Algoritma Sequitur membangun tata
bahasa dengan mengganti frase berulang dalam urutan yang diberikan dengan aturan baru dan
karenanya menghasilkan representasi singkat dari urutan. Dan semua dalam bentuk /owercase.
Terdapat 2 aturan dalam algoritma Sequitur yaitu:

1. Diagram Keunikan (Diagram Uniqueness)
Diagram Uniqueness mempunyai arti bahwa tidak ada pasangan dari simbol atau diagram
muncul lebih dari sekali dalam sebuah tata bahasa. Jika hal ini terjadi maka akan melanggar
aturan batasan pertama (diagram uniqueness) sehingga akan membentuk aturan baru (simbol
non-terminal) yang akan menggantikan simbol atau diagram yang muncul lebih dari sekali.
2. Aturan Kegunaan (Rule Utility)
Rule Utility mempunyai arti bahwa setiap aturan produksi digunakan lebih dari sekali. Dan
jika ada aturan yang hanya digunakan sekali maka akan terjadi pelanggaran pada batasan
kedua (rule utility) sehingga aturan yang hanya dipakai sekali akan dihapus atau dihilangkan.

Informatics 2026 11

Di bawah ini merupakan algoritma Sequitur:
Masukkan karakter pertama S untuk membuat hasil dari S —p abcababcd

Input (a) Grammar

S ———> abcababed S — AcAAcd
A — ab

Input (b) Grammar

S —— AcAAcd S ——— BABd

Cara Kerja:

1. Masukkan karakter pertama s untuk membuat hasil dari S — abcababcd,
2. Mencocokan pada non-terminal yang ada;

3. Membuat non-terminal baru;

4. Memindahkan non-terminal,

5. Memasukkan karakter baru sampai tidak ada karakter yang tersisa.

2.3 Faktor-faktor yang Mempengaruhi Performa

Algoritma kompresi dapat berkinerja berbeda tergantung pada jenis data yang diterapkan.
Algoritma kompresi teks umumnya berfokus untuk mengurangi redundansi dalam teks. Setiap
jenis data memerlukan pendekatan kompresi yang berbeda sesuai dengan karakteristiknya, dan
pemilihan algoritma kompresi yang tepat dapat sangat memengaruhi kinerja kompresi.
Kompresi dan dekompresi adalah proses untuk mengurangi ukuran file dan mempercepat
pengiriman data. Kecepatan eksekusi algoritma dalam proses kompresi dan dekompresi sangat
penting terutama dalam aplikasi yang membutuhkan respons cepat. Pada saat yang sama,
kecepatan proses kompresi dan dekompresi sebanding dengan ukuran file, artinya semakin besar
file yang diproses, maka akan semakin lama prosesnya. Rasio kompresi mengindikasikan sejauh
mana ukuran data dapat dikurangi oleh algoritma, di mana rasio yang tinggi menandakan
efektivitas tinggi.

3. Hasil dan Pembahasan

3.1 Kompresi
Misalkan diberikan:

string : “KUMAKAN MAKANAN MAMAKKU”
string lowercase : kumakan makanan mamaku

Tabel 1. Total Bit Sebelum Dikompresi Menggunakan Algoritma Sequitur

Karakter Frekuensi ASCII ASCII Binary Bit BitxFrekuensi
Desimal
k 5 40 01101011 8 40
u 2 16 01110101 8 16
m 4 32 01101101 8 32
a 7 56 01100001 8 56
n 3 24 01101110 8 24
sp 2 16 00100000 8 16
Jumlah Bit % Frekuensi 184 bit

Dari kata “kumakan makanan mamakku” pasangan karakter pertama adalah “ku”, kemudian
dilakukan pemeriksaan apakah jumlah pasangan “ku” muncul lebih dari satu kali. Dalam string
“kumakan makanan mamakku” pasangan “ku” muncul sebanyak dua kali, maka “ku” diubah
menjadi “A” di mana “A” merupakan simbol nonterminal.

Informatics 2026

12

New string : Amakan makanan mamakA

Kemudian dilakukan lagi pemeriksaan apakah masih terdapat pasangan karakter yang muncul
lebih dari satu kali. Pasangan yang ditemukan muncul lebih dari satu kali adalah “ma”, sehingga
“ma” diubah menjadi simbol nonterminal “B”.

New String : ABkan Bkanan BbkA
Keseluruhan proses dapat dilihat pada tabel 2 berikut ini:

Tabel 2. Proses Algoritma Sequitur

Proses String Diagram Nonterminal Rule New String
1 Kumakan Ku A A=ku Amakan
makanan makanan
mamakku mamakA
2 Amakan makanan ma B B=ma ABkan
mamakA Bkanan
BBKA
3 ABkan Bkanan Bk C C=Bk ACan Canan
BBKA BCA
4 ACan Canan Ca D D=Ca ADn Dnan
BCA BCA
5 ADn Dnan BCA Dn E E=Dn AE Ean
BCA

Total String Bit yang diperoleh dari proses kompresi dapat dilihat pada tabel 2 berikut:

Tabel 3. Total Bit Setelah Dikompresi Menggunakan Algoritma Sequitur

Karakter Frekuensi ASCII ASCII Bit BitxFrekuensi
Desimal Binary
A 2 65 01000001 8 16
E 2 69 01000101 8 16
N2 2 32 00100000 8 16
a 1 97 01100001 8 8
n 1 110 01101110 8 8
B 1 70 01000110 8 8
C 1 107 01101011 8 8
Jumlah Bit x Frekuensi 80 bit

Dari hasil kompresi tersebut dapat diukur kinerja algoritma Sequitur adalah sebagai berikut :
a. Ratio Compression (RC)

ukuran bit data sebelum dikompresi 184
Rc = P =—=23

ukuran bit data setelah dikompresi 80

b. Compression of Ratio (CR)

ukuran bit data sebelum dikompresi 80
Cr= P22 = — x 100% = 43,47%

ukuran bit data setelah dikompresi 184

¢. Redudancy (RD)
Rp = 100% — Cr = 100% — 43,47% = 56,53%

3.2 Dekompresi

Pada Algoritma Sequitur, file yang baru dibuat berisi informasi tentang rule (diagram dan nilai
nonterminal) yang digunakan saat proses kompresi. Rule yang diperoleh dari String AE Ean BCA
adalah A = ku, B=ma, C = Bk, D = Ca, E = Dn, maka String hasil kompresi dibaca dari indeks
ke 0 sampai indeks terakhir satu persatu karakter indeks ke 0 adalah A, A terdapat dalam rule
sehingga berubah menjadi “ku” maka diperoleh string “Amakan makanan kakakA”. Setelah itu,
pemeriksaan dilakukan kembali pada string apakah masih memiliki simbol ronferminal di
dalamnya. Jika masih terdapat simbol nonteriminal, maka dilakukan pembacaan indeks seterusnya
sehingga string hasil dekompresi menjadi “kumakan makanan kakakku”.

Informatics 2026

13

3.3 Pengujian

Berikut merupakan hasil pengujian pada algoritma Sequitur:

Tabel 4. Hasil Pengujian Algoritma Sequitur

Jumlah Bit Sebelum Bit RC CR RD Waktu Waktu
No Karakter Dikompresi | Terkompresi (%) (%) Kompresi | Dekompresi
(byte) (ms) (ms)
1 49 392 176 2,22 44,898 55,102 0,10 00,12
2 191 1528 952 1,605 62,3037 37,696 0,18 00,14
3 53 424 24 17,66 5,66 94,34 0,12 00,13
Hasil perbandingan dapat dilihat pada gambar 2 berikut:
1800
1600
1400 /l\
1200 7
1000 Vi \
800
600 I \
400 / \ === NOmor 1
200 '—J' S\ =fi=Nomor 2
0+ R e T I T
: Nomor 3
\.\@ @ro\ @5—} & Qﬁ\e\) . \@e\ . \@s\
AN ® & DU\ BN
x& © © N N
SR Q
@ & K & 9
¥ & N e
\'§\ o 2 >
\)@ »\c’z @ >
R N

Gambar 2. Grafik Hasil Pengujian Algoritma Sequitur

Dari hasil uji coba pada aplikasi kompresi teks diperoleh bahwa kedua algoritma tersebut dapat
mengkompresi file (*.txt) dimana ukuran file hasil menjadi berkurang setelah dilakukan
kompresi. Dan untuk pengembalian teks, pengujian dekompresi dapat berjalan baik karena isi
dan ukuran file dapat kembali seperti semula.

4. Kesimpulan

Kesimpulan yang dapat diambil setelah melakukan implementasi sequitur dalam kompresi pola
teks berulang adalah sebagai berikut, Aplikasi yang dirancang dalam penelitian telah mampu
melakukan proses kompresi file teks dengan algoritma sequitur. Aplikasi yang dirancang dalam
penelitian ini telah mampu melakukan proses dekompresi file teks hasil kompresi menjadi file
teks semula sebelum file teks dikompresi. Berdasarkan hasil pengujian yang dilakukan
disimpulkan bahwa algoritma sequitur lebih unggul jika menggunakan string yang mengandung
perulangan frase. Semakin panjang frase yang terdapat dalam sebuah file, maka kinerja
algoritma sequitur akan semakin baik. Pengembalian pemampatan data teks dengan algoritma
sequitur tidak menghasilkan hasil akhir yang sempurna karena hasil data teks setelah
pengembalian, seluruhnya ditampilkan dalam huruf kecil.

Daftar Pustaka

1. D. Salomon, Data Compression: The Complete Reference, 4th ed. London, UK: Springer, 2007.

2. K. Sayood, Introduction to Data Compression, 5th ed. Burlington, MA, USA: Morgan Kaufmann, 2022.

3. A. Al-Fuqgaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols,
and applications,” IEEE Commun. Surv. \& Tutorials, vol. 23, no. 4, pp. 2347-2380, 2021, doi: 10.1109/COMST.2021.3072823.

4, S. K. Pandey and R. K. Singh, “Data compression techniques for efficient data transmission: A survey,” Int. J. Inf. Technol., vol. 13, no. 3,
pp. 1127-1138, 2021, doi: 10.1007/s41870-021-00668-4.

5. R. Grimes, “Character encoding, ASCII, and Unicode in modern text processing,” ACM Comput. Surv., vol. 53, no. 4, pp. 1-36, 2021, doi:
10.1145/3431234.

6. J. Chen, Y. Wang, and X. Liu, “A survey of lossless text compression algorithms,” Inf. Sci. (Ny)., vol. 550, pp. 1-23, 2021, doi:
10.1016/}.ins.2020.11.031.

7. M. S. Obaidat, A. Anpalagan, and [. Woungang, “Efficient data transmission and storage in modern networks,” IEEE Syst. J., vol. 15, no. 2,
pp. 26002611, 2021, doi: 10.1109/JSYST.2020.3009876.

8. M. Gall¢, “Grammar-based compression and its applications,” Theor. Comput. Sci., vol. 807, pp. 3—19, 2020, doi: 10.1016/j.tcs.2019.10.012.

9. P. Deutsch, “Compression in distributed and cloud-based systems,” IEEE Cloud Comput., vol. 7, no. 3, pp. 72-80, 2020, doi:
10.1109/MCC.2020.2986734.

Informatics 2026 14

10.

11.

12.

13.

14.

15.

16.

A.N. Akram and S. A. Bakar, “Performance evaluation of Sequitur-based grammar compression for repetitive text data,” J. King Saud Univ.
-- Comput. Inf. Sci., vol. 34, no. 8§, pp. 5124-5134, 2022, doi: 10.1016/j.jksuci.2021.05.006.

J. Hagenauer, "Rate-compatible punctured convolutional codes (RCPC codes) and their applications," IEEE Trans. Commun., vol. COM -
36, pp. 389-400, Apr. 1988.

A. J. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Commun. Technol., vol. COM -19, pp.
751-772, Oct. 1971

Sari., K and M. Riasetiawan, The Development of IoT Compression Technique To The Cloud., 2019, Indonesian Journal of Computing and
Cybernetics Systems (IJCCS), vol 13, no.4. doi: 10.22146/ijccs.47270.

Sari., K & M. Riasetiawan, The Implementation of Timestamp, Bitmap and RAKE Algorithm on Data Compression and Data Transmission
from IoT to Cloud, 2018, IEEE 4th International Conference on Science and Technology (ICST), Yogyakarta, 2018, pp. 1-6. doi:
10.1109/ICSTC.2018.8528698.

Vecchio, M., Giaffreda, R. & Marcelloni, F., 2014, Adaptive lossless entropy compressors for tiny iot devices, IEEE Transactions on
Wireless Communications, 13, 2, 1088—1100.

Zalukhu, Y., Sunandar, H., & Hondro, R. K. (2018). Implementasi Metode Marr-Hilderth Operator Untuk Mendeteksi Tepi Citra
Ikonos. KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), 2(1), 343-3

